Full Title of Your Paper

Peng Shi¹, Yuanqing Xia^{1,*} and Junhu Ruan²

¹School of Technology
University of Glamorgan
Pontypridd, Wales, CF37 1DL, United Kingdom
***@glam.ac.uk; *Corresponding author: ***@glam.ac.uk

²College of Economics and Management Northwest A&F University No. 3, Taicheng Road, Yangling 712100, P. R. China ***@nwsuaf.edu.cn

Received XXX 2024; accepted XXX 2024

ABSTRACT. Please write down the abstract of your paper here...

Keywords: Please write down the keywords of your paper here, such as, Intelligent information, System control

- 1. **Introduction.** Please write down the Introduction of your paper here...
- 2. **Problem Statement and Preliminaries.** Please write down your section. When you cite some references, please give numbers, such as, ... In the work of [1-3,5], the problem of... For more results on this topic, we refer readers to [1,4,5] and the references therein...

Examples for writing definition, lemma, theorem, corollary, example, remark.

Definition 2.1. *System (1) is stable if and only if...*

Lemma 2.1. If system (1) is stable, then...

Theorem 2.1. Consider system (1) with the control law...

Proof: Let...

Corollary 2.1. If there is no uncertainty in system (1), i.e., $\triangle A = 0$, then...

Remark 2.1. It should be noted that the result in Theorem 2.1...

Example 2.1. Let us consider the following example...

$$\ddot{y} x(t) = Ax(t) + Bu(t) + B_1 w(t)$$

$$v(t) = Cx(t) + Du(t) + D_1 w(t)$$
(1)

3. Main Results. Here are the main results in this paper...

Definition 3.1. *System (1) is stable if and only if...*

Lemma 3.1. *If systems (1)-(2) are stable, then...*

$$\ddot{y} x(t) = Ax(t) + Bu(t) + B_2 w(t)$$

$$y(t) = Cx(t) + Du(t) + D_2 w(t)$$
(3)

Theorem 3.1. Consider system (3) with the control law...

Proof: Let...

Corollary 3.1. If there is no uncertainty in system (3), i.e., $\triangle A = 0$, then...

Remark 3.1. It should be noted that the result in Theorem 3.1...

Example 3.1. Let us consider the following example...

TABLE 1. Sample Data

	x_I	x_2	x_3	<i>x</i> ₄	x_5	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	x 10	<i>x</i> 11
M_1	1	1	1	0	0	0	0	0	0	0	0
M_2	0	0	1	1	1	1	1	0	1	0	0
M_3	0	1	0	1	1	0	0	1	0	0	0
M_4	1	0	0	0	2	0	0	1	0	0	0
M_5	0	0	0	1	0	1	1	0	0	0	0

4. **Control Design.** In this section, we present...

$$\ddot{y} x(t) = Ax(t) + Bu(t) + B_3 w(t)$$
(5)

$$y(t) = Cx(t) + Du(t) + D_3w(t)$$
 (6)

Definition 4.1. *System (5) is stable if and only if...*

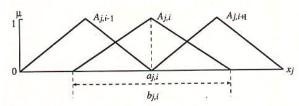


FIGURE 1. Triangular-type membership functions for x_i

Lemma 4.1. If system (5) is stable, then...

Theorem 4.1. Consider system (5)-(6) with the control law...

Proof: Let...

Corollary 4.1. If there is no uncertainty in system (5)-(6), i.e., $\triangle A = 0$, then...

Remark 4.1. It should be noted that the result in Theorem 4.1...

Example 4.1. Let us consider the following example...

.....

5. Conclusions. The conclusion of your paper is here...

Acknowledgment. This work is partially supported by... The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

- [1] M. Mahmoud and P. Shi, *Methodologies for Control of Jump Time-delay Systems*, Kluwer Academic Publishers, Boston, 2003.
- [2] P. Shi, Limited Hamilton-Jacobi-Isaacs equations for singularly perturbed zero-sum dynamic (discrete time) games, *SIAM J. Control and Optimization*, vol.41, no.3, pp.826-850, 2002.
- [3] S. K. Nguang and P. Shi, Fuzzy H-infinity output feedback control of nonlinear systems under sampled measurements, *Automatica*, vol.39, no.12, pp.2169-2174, 2003.
- [4] E. K. Boukas, Z. Liu and P. Shi, Delay-dependent stability and output feedback stabilization of Markov jump systems with time-delay, *IEE-Part D, Control Theory and Applications*, vol.149, no.5, pp.379-386, 2002.
- [5] P. Shi, E. K. Boukas and R. K. Agarwal, H₁ control of discrete-time linear uncertain systems with delayed-state, *Proc. of 37th IEEE Conference on Decision & Control*, Tampa, Florida, pp.4551-4552, 1998.